Boundary Behavior and Cesàro Means of Universal Taylor Series

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary Behavior and Cesàro Means of Universal Taylor Series

We study boundary properties of universal Taylor series. We prove that if f is a universal Taylor series on the open unit disk, then there exists a residual subset G of the unit circle such that f is unbounded on all radii with endpoints in G. We also study the effect of summability methods on universal Taylor series. In particular, we show that a Taylor series is universal if and only if its C...

متن کامل

Universal Taylor series

© Annales de l’institut Fourier, 1996, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier...

متن کامل

On the Approximation Properties of Cesàro Means of Negative Order of Walsh-Fourier Series

In this paper we establish approximate properties of Cesàro (C,−α)-means with α ∈ (0, 1) of Walsh-Fourier series. This result allows one to obtain the condition which is sufficient for the convergence of the means σ−α n (f, x) to f (x) in the L p-metric. We also show that this condition cannot be improved in the case p = 1.

متن کامل

Integral Means and Boundary Limits of Dirichlet Series

We study the boundary behavior of functions in the Hardy spaces H p for ordinary Dirichlet series. Our main result, answering a question of H. Hedenmalm, shows that the classical F. Carlson theorem on integral means does not extend to the imaginary axis for functions in H ∞, i.e., for ordinary Dirichlet series in H∞ of the right half-plane. We discuss an important embedding problem for H , the ...

متن کامل

Cesàro means of Jacobi expansions on the parabolic biangle

We study Cesàro (C, δ) means for two-variable Jacobi polynomials on the parabolic biangle B = {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ x2 ≤ 1}. Using the product formula derived by Koornwinder & Schwartz for this polynomial system, the Cesàro operator can be interpreted as a convolution operator. We then show that the Cesàro (C, δ) means of the orthogonal expansion on the biangle are uniformly bounded if δ > ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Revista Matemática Complutense

سال: 2006

ISSN: 1988-2807,1139-1138

DOI: 10.5209/rev_rema.2006.v19.n1.16662